周志华《机器学习》习题答案及解析-第一章绪论

1.1 表1.1中若只包含编号为1和4的两个样例,试给出相应的版本空间.

表1.1中1和4的样例是:

编号 色泽 根蒂 敲声 好瓜
1 青绿 蜷缩 浊响
4 乌黑 稍蜷 沉闷

表1.1对应的假设空间如下:

1 色泽=*,根蒂=*,敲声=*
2 色泽=青绿,根蒂=*,敲声=*
3 色泽=乌黑,根蒂=*,敲声=*
4 色泽=*,根蒂=蜷缩,敲声=*
5 色泽=*,根蒂=硬挺,敲声=*
6 色泽=*,根蒂=稍蜷,敲声=*
7 色泽=*,根蒂=*,敲声=浊响
8 色泽=*,根蒂=*,敲声=清脆
9 色泽=*,根蒂=*,敲声=沉闷
10 色泽=青绿,根蒂=蜷缩,敲声=*
11 色泽=青绿,根蒂=硬挺,敲声=*
12 色泽=青绿,根蒂=稍蜷,敲声=*
13 色泽=乌黑,根蒂=蜷缩,敲声=*
14 色泽=乌黑,根蒂=硬挺,敲声=*
15 色泽=乌黑,根蒂=稍蜷,敲声=*
16 色泽=青绿,根蒂=*,敲声=浊响
17 色泽=青绿,根蒂=*,敲声=清脆
18 色泽=青绿,根蒂=*,敲声=沉闷
19 色泽=乌黑,根蒂=*,敲声=浊响
20 色泽=乌黑,根蒂=*,敲声=清脆
21 色泽=乌黑,根蒂=*,敲声=沉闷
22 色泽=*,根蒂=蜷缩,敲声=浊响
23 色泽=*,根蒂=蜷缩,敲声=清脆
24 色泽=*,根蒂=蜷缩,敲声=沉闷
25 色泽=*,根蒂=硬挺,敲声=浊响
26 色泽=*,根蒂=硬挺,敲声=清脆
27 色泽=*,根蒂=硬挺,敲声=沉闷
28 色泽=*,根蒂=稍蜷,敲声=浊响
29 色泽=*,根蒂=稍蜷,敲声=清脆
30 色泽=*,根蒂=稍蜷,敲声=沉闷
31 色泽=青绿,根蒂=蜷缩,敲声=浊响
32 色泽=青绿,根蒂=蜷缩,敲声=清脆
33 色泽=青绿,根蒂=蜷缩,敲声=沉闷
34 色泽=青绿,根蒂=硬挺,敲声=浊响
35 色泽=青绿,根蒂=硬挺,敲声=清脆
36 色泽=青绿,根蒂=硬挺,敲声=沉闷
37 色泽=青绿,根蒂=稍蜷,敲声=浊响
38 色泽=青绿,根蒂=稍蜷,敲声=清脆
39 色泽=青绿,根蒂=稍蜷,敲声=沉闷
40 色泽=乌黑,根蒂=蜷缩,敲声=浊响
41 色泽=乌黑,根蒂=蜷缩,敲声=清脆
42 色泽=乌黑,根蒂=蜷缩,敲声=沉闷
43 色泽=乌黑,根蒂=硬挺,敲声=浊响
44 色泽=乌黑,根蒂=硬挺,敲声=清脆
45 色泽=乌黑,根蒂=硬挺,敲声=沉闷
46 色泽=乌黑,根蒂=稍蜷,敲声=浊响
47 色泽=乌黑,根蒂=稍蜷,敲声=清脆
48 色泽=乌黑,根蒂=稍蜷,敲声=沉闷
49 Ø

根据学习的过程:

搜索过程中可以不断删除与正例不一致的假设、和(或)与反例一致的假设。最终将会获得与训练集一致(即对所有训练样本能够进行正确判断)的假设,这就是我们学得的结果。

则样例1可以删除假设空间中的3、5、6、8、9、11-15、17-21、23-30、32-49,样例2删除假设空间中的1。

最终可以得到版本空间为:

2 色泽=青绿,根蒂=*,敲声=*
4 色泽=*,根蒂=蜷缩,敲声=*
7 色泽=*,根蒂=*,敲声=浊响
10 色泽=青绿,根蒂=蜷缩,敲声=*
16 色泽=青绿,根蒂=*,敲声=浊响
22 色泽=*,根蒂=蜷缩,敲声=浊响
31 色泽=青绿,根蒂=蜷缩,敲声=浊响

1.2 与使用单个合取式来进行假设表示相比,使用”析合范式”将使得假设空间具有更强的表示能力。

好瓜 <-> ((色泽 = )∩ (根蒂 = ) ∩ (敲声 = 浊响))∪ ((色泽 = )∩ (根蒂 = 蜷缩) ∩ (敲声 = ))∪ ((色泽 = 青绿)∩ (根蒂 = ) ∩ (敲声 = ))

1.3 若数据集包含噪声,则假设空间中可能不存在与所有训练样本都一致的假设。在此情形下,试涉及一种归纳偏好用于假设选择。

找出相同属性不同分类的结果

  1. 根据相似属性的分类结果,按照统计概率对这类分类结果进行纠正
  2. 直接删除掉这类结果

1.4 本章1.4节在论述”没有免费的午餐”定理时,默认使用了”分类错误率”作为性能度量来对分类器进行评估。若换用其他性能度量,试证明”没有免费的午餐”定理仍成立。

不会

1.5 试述机器学习能在互联网搜索的哪些环节起什么作用。

  1. 召回后结果的排序,基本上都会需要用到一个 CTR 预估模型
  2. 广告系统,基本各个环节都需要机器学习